Difference between revisions of "2004 AMC 8 Problems/Problem 17"

(Solution)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
For each person to have at least one pencil, assign one of the pencil to each of the three friends so that you have <math>3</math> left. In partitioning the remaining <math>3</math> pencils into <math>3</math> distinct groups, use [[Stars-and-bars]] to find the number of possibilities is <math>\binom{3+3-1}{3-1} = \binom{5}{2} = \boxed{\textbf{(D)}\ 10}</math>.
+
For each person to have at least one pencil, assign one of the pencil to each of the three friends so that you have <math>3</math> left. In partitioning the remaining <math>3</math> pencils into <math>3</math> distinct groups, use [[Balls-and-urn]] to find the number of possibilities is <math>\binom{3+3-1}{3-1} = \binom{5}{2} = \boxed{\textbf{(D)}\ 10}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2004|num-b=16|num-a=18}}
 
{{AMC8 box|year=2004|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 11:55, 3 June 2017

Problem

Three friends have a total of $6$ identical pencils, and each one has at least one pencil. In how many ways can this happen?

$\textbf{(A)}\ 1\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 12$

Solution

For each person to have at least one pencil, assign one of the pencil to each of the three friends so that you have $3$ left. In partitioning the remaining $3$ pencils into $3$ distinct groups, use Balls-and-urn to find the number of possibilities is $\binom{3+3-1}{3-1} = \binom{5}{2} = \boxed{\textbf{(D)}\ 10}$.

See Also

2004 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png