Difference between revisions of "2000 AMC 12 Problems/Problem 1"

 
(added problem and made major edits)
Line 1: Line 1:
obviously, the sum is the highest if two factors are the lowest!
+
In the year <math>2001</math>, the United States will host the International Mathematical Olympiad. Let <math> \displaystyle I,M,</math> and <math>\displaystyle O</math> be distinct positive integers such that the product <math>I \cdot M \cdot O = 2001 </math>. What is the largest possible value of the sum <math>\displaystyle I + M + O</math>?
so 1*3*667=2001
+
 
and 1+3+667=671 that's it!
+
<math> \mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 }  </math>
 +
 
 +
 
 +
== Solution ==
 +
The sum is the highest if two factors are the lowest!
 +
So, <math>1 \cdot 3 \cdot 667 = 2001</math> and <math>1+3+667=671</math>, (E).

Revision as of 15:59, 28 July 2006

In the year $2001$, the United States will host the International Mathematical Olympiad. Let $\displaystyle I,M,$ and $\displaystyle O$ be distinct positive integers such that the product $I \cdot M \cdot O = 2001$. What is the largest possible value of the sum $\displaystyle I + M + O$?

$\mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 }$


Solution

The sum is the highest if two factors are the lowest! So, $1 \cdot 3 \cdot 667 = 2001$ and $1+3+667=671$, (E).