Difference between revisions of "2004 AMC 10B Problems/Problem 24"

m (Actually boxed the answer)
m (Improved the look.)
Line 43: Line 43:
 
markangle(radius = 20,C, D, A, marker(markinterval(1,stickframe(2,2mm),true)));
 
markangle(radius = 20,C, D, A, marker(markinterval(1,stickframe(2,2mm),true)));
 
</asy>
 
</asy>
Let <math>E = \overline{BC}\cap \overline{AD}</math>.  Observe that <math>\angle ABC = \angle ADC</math> because they subtend the same arc.  Furthermore, <math>\angle BAE = \angle EAC</math>, so <math>\triangle ABE</math> is similar to <math>\triangle ADC</math> by AAA similarity. Then <math>\dfrac{AD}{AB} = \dfrac{CD}{BE}</math>.  By angle bisector theorem, <math>\dfrac{7}{BE} = \dfrac{8}{CE}</math> so <math>\dfrac{7}{BE} = \dfrac{8}{9-BE}</math> which gives <math>BE = \dfrac{21}{5}</math>.  Plugging this into the similarity proportion gives:  <math>\dfrac{AD}{7} = \dfrac{CD}{\dfrac{21}{5}} \implies \dfrac{AD}{CD} = \boxed{\dfrac{5}{3}} = \textbf{B}</math>.
+
Let <math>E = \overline{BC}\cap \overline{AD}</math>.  Observe that <math>\angle ABC \cong \angle ADC</math> because they subtend the same arc, <math>\overarc{AC}</math>.  Furthermore, <math>\angle BAE \cong \angle EAC</math> because they both subtend <math>\overarc{BD}</math>, so <math>\triangle ABE \sim \triangle ADC</math> by <math>\text{AA}</math> similarity. Then <math>\dfrac{AD}{AB} = \dfrac{CD}{BE}</math>.  By the [[Angle Bisector Theorem]], <math>\dfrac{7}{BE} = \dfrac{8}{CE}</math>, so <math>\dfrac{7}{BE} = \dfrac{8}{9-BE}</math>. This in turn gives <math>BE = \frac{21}{5}</math>.  Plugging this into the similarity proportion gives:  <math>\dfrac{AD}{7} = \dfrac{CD}{\dfrac{21}{5}} \implies \dfrac{AD}{CD} = {\dfrac{5}{3}} = \boxed{\text{(B)}}</math>.
  
 
== See Also ==
 
== See Also ==

Revision as of 00:07, 11 November 2017

In triangle $ABC$ we have $AB=7$, $AC=8$, $BC=9$. Point $D$ is on the circumscribed circle of the triangle so that $AD$ bisects angle $BAC$. What is the value of $AD/CD$?

$\text{(A) } \dfrac{9}{8} \quad \text{(B) } \dfrac{5}{3} \quad \text{(C) } 2 \quad \text{(D) } \dfrac{17}{7} \quad \text{(E) } \dfrac{5}{2}$


Solution 1

Set $\overline{BD}$'s length as $x$. $\overline{CD}$'s length must also be $x$ since $\angle BAD$ and $\angle DAC$ intercept arcs of equal length(because $\angle BAD=\angle DAC$). Using Ptolemy's Theorem, $7x+8x=9(AD)$. The ratio is $\frac{5}{3}\implies\boxed{\text{(B)}}$

Solution 2

[asy] import graph; import geometry; import markers;  unitsize(0.5 cm);  pair A, B, C, D, E, I;  A = (11/3,8*sqrt(5)/3); B = (0,0); C = (9,0); I = incenter(A,B,C); D = intersectionpoint(I--(I + 2*(I - A)), circumcircle(A,B,C)); E = extension(A,D,B,C);  draw(A--B--C--cycle); draw(circumcircle(A,B,C)); draw(D--A); draw(D--B); draw(D--C);  label("$A$", A, N); label("$B$", B, SW); label("$C$", C, SE); label("$D$", D, S); label("$E$", E, NE);  markangle(radius = 20,B, A, C, marker(markinterval(2,stickframe(1,2mm),true))); markangle(radius = 20,B, C, D, marker(markinterval(1,stickframe(1,2mm),true))); markangle(radius = 20,D, B, C, marker(markinterval(1,stickframe(1,2mm),true))); markangle(radius = 20,C, B, A, marker(markinterval(1,stickframe(2,2mm),true))); markangle(radius = 20,C, D, A, marker(markinterval(1,stickframe(2,2mm),true))); [/asy] Let $E = \overline{BC}\cap \overline{AD}$. Observe that $\angle ABC \cong \angle ADC$ because they subtend the same arc, $\overarc{AC}$. Furthermore, $\angle BAE \cong \angle EAC$ because they both subtend $\overarc{BD}$, so $\triangle ABE \sim \triangle ADC$ by $\text{AA}$ similarity. Then $\dfrac{AD}{AB} = \dfrac{CD}{BE}$. By the Angle Bisector Theorem, $\dfrac{7}{BE} = \dfrac{8}{CE}$, so $\dfrac{7}{BE} = \dfrac{8}{9-BE}$. This in turn gives $BE = \frac{21}{5}$. Plugging this into the similarity proportion gives: $\dfrac{AD}{7} = \dfrac{CD}{\dfrac{21}{5}} \implies \dfrac{AD}{CD} = {\dfrac{5}{3}} = \boxed{\text{(B)}}$.

See Also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png