Difference between revisions of "2004 AMC 10A Problems/Problem 20"
(Added solution 3) |
m (→Solution 1) |
||
Line 6: | Line 6: | ||
<math> \mathrm{(A) \ } \frac{4}{3} \qquad \mathrm{(B) \ } \frac{3}{2} \qquad \mathrm{(C) \ } \sqrt{3} \qquad \mathrm{(D) \ } 2 \qquad \mathrm{(E) \ } 1+\sqrt{3} </math> | <math> \mathrm{(A) \ } \frac{4}{3} \qquad \mathrm{(B) \ } \frac{3}{2} \qquad \mathrm{(C) \ } \sqrt{3} \qquad \mathrm{(D) \ } 2 \qquad \mathrm{(E) \ } 1+\sqrt{3} </math> | ||
− | ==Solution== | + | ==Solution 1== |
Since triangle <math>BEF</math> is equilateral, <math>EA=FC</math>, and <math>EAB</math> and <math>FCB</math> are <math>SAS</math> congruent. Thus, triangle <math>DEF</math> is an isosceles right triangle. So we let <math>DE=x</math>. Thus <math>EF=EB=FB=x\sqrt{2}</math>. If we go angle chasing, we find out that <math>\angle AEB=75^{\circ}</math>, thus <math>\angle ABE=15^{\circ}</math>. <math>\frac{AE}{EB}=\sin{15^{\circ}}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>. Thus <math>\frac{AE}{x\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>, or <math>AE=\frac{x(\sqrt{3}-1)}{2}</math>. Thus <math>AB=\frac{x(\sqrt{3}+1)}{2}</math>, and <math>[ABE]=\frac{x^2}{4}</math>, and <math>[DEF]=\frac{x^2}{2}</math>. Thus the ratio of the areas is <math>\boxed{\mathrm{(D)}\ 2}</math> | Since triangle <math>BEF</math> is equilateral, <math>EA=FC</math>, and <math>EAB</math> and <math>FCB</math> are <math>SAS</math> congruent. Thus, triangle <math>DEF</math> is an isosceles right triangle. So we let <math>DE=x</math>. Thus <math>EF=EB=FB=x\sqrt{2}</math>. If we go angle chasing, we find out that <math>\angle AEB=75^{\circ}</math>, thus <math>\angle ABE=15^{\circ}</math>. <math>\frac{AE}{EB}=\sin{15^{\circ}}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>. Thus <math>\frac{AE}{x\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{4}</math>, or <math>AE=\frac{x(\sqrt{3}-1)}{2}</math>. Thus <math>AB=\frac{x(\sqrt{3}+1)}{2}</math>, and <math>[ABE]=\frac{x^2}{4}</math>, and <math>[DEF]=\frac{x^2}{2}</math>. Thus the ratio of the areas is <math>\boxed{\mathrm{(D)}\ 2}</math> | ||
Revision as of 17:39, 13 December 2017
Problem
Points and are located on square so that is equilateral. What is the ratio of the area of to that of ?
Solution 1
Since triangle is equilateral, , and and are congruent. Thus, triangle is an isosceles right triangle. So we let . Thus . If we go angle chasing, we find out that , thus . . Thus , or . Thus , and , and . Thus the ratio of the areas is
Solution 2 (Non-trig)
Without loss of generality, let the side length of be 1. Let . It suffices that . Then triangles and are congruent by HL, so and . We find that , and so, by the Pythagorean Theorem, we have This yields , so . Thus, the desired ratio of areas is
Solution 3
is equilateral, so , and so they must each be . Then let , which gives and . The area of is then . is an isosceles right triangle with hypotenuse 1, so and therefore its area is . The ratio of areas is then
See also
2004 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.