Difference between revisions of "2001 IMO Problems/Problem 2"
m (→Solution using Holder's) |
(→Solution) |
||
Line 4: | Line 4: | ||
__TOC__ | __TOC__ | ||
== Solution == | == Solution == | ||
− | === Solution using Holder's === | + | Firstly, <math>a^{2}+8bc=(a^{2}+2bc)+6bc \leq^{AG} (a^{2}+b^{2}+c^{2})+6bc=S+6bc</math> (where <math>S=a^{2}+b^{2}+c^{2}</math>) and its cyclic variations. |
+ | Next note that <math>(a,b,c)</math> and <math>\left( \frac{1}{\sqrt{S+6bc}}, \frac{1}{\sqrt{S+6ca}}, \frac{1}{\sqrt{S+6ab}} \right)</math> are similarly oriented sequences. Thus | ||
+ | <cmath>\sum_{cyc} \frac{a}{\sqrt{a^{2}+8bc}} \ge \sum_{cyc} \frac{a}{\sqrt{S+6bc}}</cmath> | ||
+ | <cmath>\geq ^{Cheff} \frac{1}{3}(a+b+c)\left( \frac{1}{\sqrt{S+6bc}}+\frac{1}{\sqrt{S+6ca}}+\frac{1}{\sqrt{S+6ab}} \right)</cmath> | ||
+ | <cmath>\geq^{AH} \frac{1}{3}(a+b+c) \left( \frac{9}{\sqrt{S+6bc}+\sqrt{S+6ca}+\sqrt{S+6ab}} \right)</cmath> | ||
+ | <cmath>\geq^{QA} (a+b+c) \sqrt{\frac{3}{(S+6bc)+(S+6ca)+(S+6ab)}}</cmath> | ||
+ | <cmath>=(a+b+c)\sqrt{\frac{3}{3(a+b+c)^{2}}}=1</cmath> | ||
+ | Hence the inequality has been established. | ||
+ | Equality holds if <math>a=b=c=1</math>. | ||
+ | |||
+ | Notation: <math>AG</math>: AM-GM inequality, <math>AH</math>: AM-HM inequality, <math>Cheff</math>: Chebycheff's inequality, <math>QA</math>: QM-AM inequality / RMS inequality | ||
+ | |||
+ | |||
+ | === Alternate Solution using Holder's === | ||
By Holder's inequality, | By Holder's inequality, | ||
<math>\left(\sum_{cyc}\frac{a}{\sqrt{a^{2}+8bc}}\right)\left(\sum_{cyc}\frac{a}{\sqrt{a^{2}+8bc}}\right)\left(\sum_{cyc} a(a^{2}+8bc)\right)\ge (a+b+c)^{3}</math> | <math>\left(\sum_{cyc}\frac{a}{\sqrt{a^{2}+8bc}}\right)\left(\sum_{cyc}\frac{a}{\sqrt{a^{2}+8bc}}\right)\left(\sum_{cyc} a(a^{2}+8bc)\right)\ge (a+b+c)^{3}</math> |
Revision as of 23:04, 27 December 2017
Problem
Let be positive real numbers. Prove that .
Contents
Solution
Firstly, (where ) and its cyclic variations. Next note that and are similarly oriented sequences. Thus Hence the inequality has been established. Equality holds if .
Notation: : AM-GM inequality, : AM-HM inequality, : Chebycheff's inequality, : QM-AM inequality / RMS inequality
Alternate Solution using Holder's
By Holder's inequality, Thus we need only show that Which is obviously true since .
Alternate Solution using Jensen's
This inequality is homogeneous so we can assume without loss of generality and apply Jensen's inequality for , so we get: but by AM-GM, and thus the inequality is proven.
Alternate Solution using Isolated Fudging
We claim that Cross-multiplying, squaring both sides and expanding, we have After cancelling the term, we apply AM-GM to RHS and obtain as desired, completing the proof of the claim.
Similarly and . Summing the three inequalities, we obtain the original inequality.
Alternate Solution using Cauchy
We want to prove
Note that since this inequality is homogenous, assume .
By Cauchy,
Dividing both sides by , we see that we want to prove or equivalently
Squaring both sides, we have
Now use Cauchy again to obtain
Since , the inequality becomes after some simplifying.
But this equals and since we just want to prove after some simplifying.
But that is true by AM-GM or Muirhead. Thus, proved.
See also
2001 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |