Difference between revisions of "2005 AMC 10A Problems/Problem 4"
(added problem and solution) |
(wikification) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | A rectangle with a diagonal of length <math>x</math> is twice as long as it is wide. What is the area of the rectangle? | + | A rectangle with a [[diagonal]] of length <math>x</math> is twice as long as it is wide. What is the area of the rectangle? |
<math> \mathrm{(A) \ } \frac{1}{4}x^2\qquad \mathrm{(B) \ } \frac{2}{5}x^2\qquad \mathrm{(C) \ } \frac{1}{2}x^2\qquad \mathrm{(D) \ } x^2\qquad \mathrm{(E) \ } \frac{3}{2}x^2 </math> | <math> \mathrm{(A) \ } \frac{1}{4}x^2\qquad \mathrm{(B) \ } \frac{2}{5}x^2\qquad \mathrm{(C) \ } \frac{1}{2}x^2\qquad \mathrm{(D) \ } x^2\qquad \mathrm{(E) \ } \frac{3}{2}x^2 </math> | ||
==Solution== | ==Solution== | ||
− | Let the width of the rectangle be <math>w</math>. | + | Let the width of the rectangle be <math>w</math>. Then the length is <math>2w</math> |
− | |||
− | Then the length is <math>2w</math> | ||
Using the [[Pythagorean Theorem]]: | Using the [[Pythagorean Theorem]]: | ||
− | <math> | + | <math>x^{2}=w^{2}+(2w)^{2}</math> |
<math>x^{2}=5w^{2}</math> | <math>x^{2}=5w^{2}</math> | ||
Line 19: | Line 17: | ||
<math>2w=\frac{2x}{\sqrt{5}}</math> | <math>2w=\frac{2x}{\sqrt{5}}</math> | ||
− | So the area of the rectangle is <math> w \cdot 2w = \frac{x}{\sqrt{5}} \cdot \frac{2x}{\sqrt{5}} = \frac{2}{5}x^{2} \ | + | So the [[area]] of the [[rectangle]] is <math> w \cdot 2w = \frac{x}{\sqrt{5}} \cdot \frac{2x}{\sqrt{5}} = \frac{2}{5}x^{2} \Longrightarrow \mathrm{(B)}</math> |
==See Also== | ==See Also== | ||
*[[2005 AMC 10A Problems]] | *[[2005 AMC 10A Problems]] | ||
Line 26: | Line 24: | ||
*[[2005 AMC 10A Problems/Problem 5|Next Problem]] | *[[2005 AMC 10A Problems/Problem 5|Next Problem]] | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] |
Revision as of 09:37, 2 August 2006
Problem
A rectangle with a diagonal of length is twice as long as it is wide. What is the area of the rectangle?
Solution
Let the width of the rectangle be . Then the length is
Using the Pythagorean Theorem:
So the area of the rectangle is