Difference between revisions of "2018 AMC 10B Problems/Problem 6"

(Added a solution)
Line 2: Line 2:
  
 
<math>\textbf{(A)} \frac{1}{15} \qquad \textbf{(B)} \frac{1}{10} \qquad \textbf{(C)} \frac{1}{6} \qquad \textbf{(D)} \frac{1}{5} \qquad \textbf{(E)} \frac{1}{4}</math>
 
<math>\textbf{(A)} \frac{1}{15} \qquad \textbf{(B)} \frac{1}{10} \qquad \textbf{(C)} \frac{1}{6} \qquad \textbf{(D)} \frac{1}{5} \qquad \textbf{(E)} \frac{1}{4}</math>
 +
 +
== Solution 1 ==
 +
 +
Notice that the only two ways such that more than <math>2</math> draws are required are <math>1,2</math>, <math>1,3</math>, <math>2,1</math>, and <math>3,1</math>. Notice that each of those cases has a <math>\frac{1}{5} \cdot \frac{1}{4}</math> chance, so the answer is <math>\frac{1}{5} \cdot \frac{1}{4} \cdot 4 = \frac{1}{5}</math>, or <math>\boxed{D}</math>.

Revision as of 15:18, 16 February 2018

A box contains $5$ chips, numbered $1$, $2$, $3$, $4$, and $5$. Chips are drawn randomly one at a time without replacement until the sum of the values drawn exceeds $4$. What is the probability that $3$ draws are required?

$\textbf{(A)} \frac{1}{15} \qquad \textbf{(B)} \frac{1}{10} \qquad \textbf{(C)} \frac{1}{6} \qquad \textbf{(D)} \frac{1}{5} \qquad \textbf{(E)} \frac{1}{4}$

Solution 1

Notice that the only two ways such that more than $2$ draws are required are $1,2$, $1,3$, $2,1$, and $3,1$. Notice that each of those cases has a $\frac{1}{5} \cdot \frac{1}{4}$ chance, so the answer is $\frac{1}{5} \cdot \frac{1}{4} \cdot 4 = \frac{1}{5}$, or $\boxed{D}$.