GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2018 AMC 12B Problems"

(Created page with "== Problem 1 == == Problem 2 == == Problem 3 == == Problem 4 == == Problem 5 == == Problem 6 == == Problem 7 == == Problem 8 == == Problem 9 == == Problem 10 == == P...")
 
Line 1: Line 1:
 
== Problem 1 ==
 
== Problem 1 ==
 +
 +
Kate bakes 20-inch by 18-inch pan of cornbread. The cornbread is cut into pieces that measure 2 inches by 2 inches. How many pieces of cornbread does the pan contain?
 +
 +
<math>\textbf{(A) } 90 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 180 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 360</math>
  
 
== Problem 2 ==
 
== Problem 2 ==
 +
 +
Sam drove 96 miles in 90 minutes. His average speed during the first 30 minutes was 60 mph (miles per hour), and his average speed during the second 30 minutes was 65 mph. What was his average speed, in mph, during the last 30 minutes?
 +
 +
<math>\textbf{(A) } 64 \qquad \textbf{(B) } 65 \qquad \textbf{(C) } 66 \qquad \textbf{(D) } 67 \qquad \textbf{(E) } 68</math>
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
 +
In the expression <math>\left(\underline{\qquad}\times\underline{\qquad}\right)+\left(\underline{\qquad}\times\underline{\qquad}\right)</math> each blank is to be filled in with one of the digits <math>1,2,3,</math> or <math>4,</math> with each digit being used once. How many different values can be obtained?
 +
 +
<math>
 +
\textbf{(A) }2 \qquad
 +
\textbf{(B) }3\qquad
 +
\textbf{(C) }4 \qquad
 +
\textbf{(D) }6 \qquad
 +
\textbf{(E) }24 \qquad
 +
</math>
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
 +
A three-dimensional rectangular box with dimensions <math>X</math>, <math>Y</math>, and <math>Z</math> has faces whose surface areas are <math>24</math>, <math>24</math>, <math>48</math>, <math>48</math>, <math>72</math>, and <math>72</math> square units. What is <math>X</math> + <math>Y</math> + <math>Z</math>?
 +
 +
<math>
 +
\textbf{(A) }18 \qquad
 +
\textbf{(B) }22 \qquad
 +
\textbf{(C) }24 \qquad
 +
\textbf{(D) }30 \qquad
 +
\textbf{(E) }36 \qquad
 +
</math>
  
 
== Problem 5 ==
 
== Problem 5 ==
 +
 +
How many subsets of <math>\{2,3,4,5,6,7,8,9\}</math> contain at least one prime number?
 +
 +
<math>\textbf{(A)} \text{ 128} \qquad \textbf{(B)} \text{ 192} \qquad \textbf{(C)} \text{ 224} \qquad \textbf{(D)} \text{ 240} \qquad \textbf{(E)} \text{ 256}</math>
  
 
== Problem 6 ==
 
== Problem 6 ==
 +
 +
Suppose <math>S</math> cans of soda can be purchased from a vending machine for <math>Q</math> quarters. Which of the following expressions describes the number of cans of soda that can be purchased for <math>D</math> dollars, where 1 dollar is worth 4 quarters?
 +
 +
<math>\textbf{(A)} \frac{4DQ}{S} \qquad \textbf{(B)} \frac{4DS}{Q} \qquad \textbf{(C)} \frac{4Q}{DS} \qquad \textbf{(D)} \frac{DQ}{4S} \qquad \textbf{(E)} \frac{DS}{4Q}</math>
  
 
== Problem 7 ==
 
== Problem 7 ==
 +
 +
What is the value of
 +
<cmath> \log_37\cdot\log_59\cdot\log_711\cdot\log_913\cdots\log_{21}25\cdot\log_{23}27? </cmath>
 +
 +
<math>\textbf{(A) } 3 \qquad \textbf{(B) } 3\log_{7}23 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 10 </math>
  
 
== Problem 8 ==
 
== Problem 8 ==
 +
 +
Line segment <math>\overline{AB}</math> is a diameter of a circle with <math>AB = 24</math>. Point <math>C</math>, not equal to <math>A</math> or <math>B</math>, lies on the circle. As point <math>C</math> moves around the circle, the centroid (center of mass) of (insert triangle symbol)<math>ABC</math> traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?
 +
 +
<math>\textbf{(A)} \indent 25 \qquad \textbf{(B)} \indent 32  \qquad \textbf{(C)} \indent 50  \qquad \textbf{(D)} \indent 63 \qquad \textbf{(E)} \indent 75  </math>
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
 +
What is
 +
<cmath> \sum^{100}_{i=1} \sum^{100}_{j=1} (i+j) ? </cmath>
 +
 +
<math> \textbf{(A) }100,100 \qquad
 +
\textbf{(B) }500,500\qquad
 +
\textbf{(C) }505,000 \qquad
 +
\textbf{(D) }1,001,000 \qquad
 +
\textbf{(E) }1,010,000 \qquad </math>
  
 
== Problem 10 ==
 
== Problem 10 ==
 +
 +
A list of <math>2018</math> positive integers has a unique mode, which occurs exactly <math>10</math> times. What is the least number of distinct values that can occur in the list?
 +
 +
<math> \textbf{(A) }202 \qquad
 +
\textbf{(B) }223 \qquad
 +
\textbf{(C) }224 \qquad
 +
\textbf{(D) }225 \qquad
 +
\textbf{(E) }234 \qquad </math>
  
 
== Problem 11 ==
 
== Problem 11 ==

Revision as of 16:31, 18 February 2018

Problem 1

Kate bakes 20-inch by 18-inch pan of cornbread. The cornbread is cut into pieces that measure 2 inches by 2 inches. How many pieces of cornbread does the pan contain?

$\textbf{(A) } 90 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 180 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 360$

Problem 2

Sam drove 96 miles in 90 minutes. His average speed during the first 30 minutes was 60 mph (miles per hour), and his average speed during the second 30 minutes was 65 mph. What was his average speed, in mph, during the last 30 minutes?

$\textbf{(A) } 64 \qquad \textbf{(B) } 65 \qquad \textbf{(C) } 66 \qquad \textbf{(D) } 67 \qquad \textbf{(E) } 68$

Problem 3

In the expression $\left(\underline{\qquad}\times\underline{\qquad}\right)+\left(\underline{\qquad}\times\underline{\qquad}\right)$ each blank is to be filled in with one of the digits $1,2,3,$ or $4,$ with each digit being used once. How many different values can be obtained?

$\textbf{(A) }2 \qquad \textbf{(B) }3\qquad \textbf{(C) }4 \qquad \textbf{(D) }6 \qquad \textbf{(E) }24 \qquad$

Problem 4

A three-dimensional rectangular box with dimensions $X$, $Y$, and $Z$ has faces whose surface areas are $24$, $24$, $48$, $48$, $72$, and $72$ square units. What is $X$ + $Y$ + $Z$?

$\textbf{(A) }18 \qquad \textbf{(B) }22 \qquad \textbf{(C) }24 \qquad \textbf{(D) }30 \qquad \textbf{(E) }36 \qquad$

Problem 5

How many subsets of $\{2,3,4,5,6,7,8,9\}$ contain at least one prime number?

$\textbf{(A)} \text{ 128} \qquad \textbf{(B)} \text{ 192} \qquad \textbf{(C)} \text{ 224} \qquad \textbf{(D)} \text{ 240} \qquad \textbf{(E)} \text{ 256}$

Problem 6

Suppose $S$ cans of soda can be purchased from a vending machine for $Q$ quarters. Which of the following expressions describes the number of cans of soda that can be purchased for $D$ dollars, where 1 dollar is worth 4 quarters?

$\textbf{(A)} \frac{4DQ}{S} \qquad \textbf{(B)} \frac{4DS}{Q} \qquad \textbf{(C)} \frac{4Q}{DS} \qquad \textbf{(D)} \frac{DQ}{4S} \qquad \textbf{(E)} \frac{DS}{4Q}$

Problem 7

What is the value of \[\log_37\cdot\log_59\cdot\log_711\cdot\log_913\cdots\log_{21}25\cdot\log_{23}27?\]

$\textbf{(A) } 3 \qquad \textbf{(B) } 3\log_{7}23 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 10$

Problem 8

Line segment $\overline{AB}$ is a diameter of a circle with $AB = 24$. Point $C$, not equal to $A$ or $B$, lies on the circle. As point $C$ moves around the circle, the centroid (center of mass) of (insert triangle symbol)$ABC$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?

$\textbf{(A)} \indent 25 \qquad \textbf{(B)} \indent 32  \qquad \textbf{(C)} \indent 50  \qquad \textbf{(D)} \indent 63 \qquad \textbf{(E)} \indent 75$

Problem 9

What is \[\sum^{100}_{i=1} \sum^{100}_{j=1} (i+j) ?\]

$\textbf{(A) }100,100 \qquad \textbf{(B) }500,500\qquad \textbf{(C) }505,000 \qquad \textbf{(D) }1,001,000 \qquad \textbf{(E) }1,010,000 \qquad$

Problem 10

A list of $2018$ positive integers has a unique mode, which occurs exactly $10$ times. What is the least number of distinct values that can occur in the list?

$\textbf{(A) }202 \qquad \textbf{(B) }223 \qquad \textbf{(C) }224 \qquad \textbf{(D) }225 \qquad \textbf{(E) }234 \qquad$

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25