Difference between revisions of "2008 AIME II Problems/Problem 14"
(→Solution 2) |
Yojan sushi (talk | contribs) (→Solution 2) |
||
Line 25: | Line 25: | ||
<center><math>\rho = \frac {\cos{0}}{\sin{\frac {\pi}{3}}} = \frac {2}{\sqrt {3}}</math></center> | <center><math>\rho = \frac {\cos{0}}{\sin{\frac {\pi}{3}}} = \frac {2}{\sqrt {3}}</math></center> | ||
Then, <math>\rho^2 = \frac {4}{3}</math>, and the answer is <math>3+4=\boxed{007}</math>. | Then, <math>\rho^2 = \frac {4}{3}</math>, and the answer is <math>3+4=\boxed{007}</math>. | ||
+ | |||
+ | (For a non-calculus way to maximize the function above: | ||
+ | |||
+ | Let us work with degrees. Let <math>f(x)=\frac{\cos x}{\sin(x+60)}</math>. We need to maximize <math>f</math> on <math>[0,30]</math>. | ||
+ | |||
+ | Suppose <math>k</math> is an upper bound of <math>f</math> on this range; in other words, assume <math>f(x)\le k</math> for all <math>x</math> in this range. Then: <cmath>\cos x\le k\sin(x+60)=k\cdot\left(\frac{\sqrt{3}}{2}\cos x+\frac{1}{2}\sin x\right)</cmath> | ||
+ | <cmath>\rightarrow 0\le \left(\frac{\sqrt{3}}{2}-1\right)\cos x+\frac{k}{2}\sin x\rightarrow 0\le (\sqrt{3}k-2)\cos x+k\sin x</cmath> | ||
+ | <cmath>\rightarrow (2-\sqrt{3}k)\cos x\le k\sin x\rightarrow \frac{2-\sqrt{3}k}{k}\le \tan x,</cmath> | ||
+ | for all <math>x</math> in <math>[0,30]</math>. In particular, for <math>x=0</math>, <math>\frac{2-\sqrt{3}k}{k}</math> must be less than or equal to <math>0</math>, so <math>k\ge \frac{2}{\sqrt{3}}</math>. | ||
+ | |||
+ | The least possible upper bound of <math>f</math> on this interval is <math>k=\frac{2}{\sqrt{3}}</math>. This inequality must hold by the above logic, and in fact, the inequality reaches equality when <math>x=0</math>. Thus, <math>f(x)</math> attains a maximum of <math>\frac{2}{\sqrt{3}}</math> on the interval.) | ||
=== Solution 3 === | === Solution 3 === |
Revision as of 19:59, 23 February 2018
Problem
Let and
be positive real numbers with
. Let
be the maximum possible value of
for which the system of equations
has a solution in
satisfying
and
. Then
can be expressed as a fraction
, where
and
are relatively prime positive integers. Find
.
Solution
Solution 1
Notice that the given equation implies

We have , so
.
Then, notice , so
.
The solution satisfies the equation, so
, and the answer is
.
Solution 2
Consider the points and
. They form an equilateral triangle with the origin. We let the side length be
, so
and
.
Thus and we need to maximize this for
.
Taking the derivative shows that , so the maximum is at the endpoint
. We then get

Then, , and the answer is
.
(For a non-calculus way to maximize the function above:
Let us work with degrees. Let . We need to maximize
on
.
Suppose is an upper bound of
on this range; in other words, assume
for all
in this range. Then:
for all
in
. In particular, for
,
must be less than or equal to
, so
.
The least possible upper bound of on this interval is
. This inequality must hold by the above logic, and in fact, the inequality reaches equality when
. Thus,
attains a maximum of
on the interval.)
Solution 3
Consider a cyclic quadrilateral with
, and
. Then
From Ptolemy's Theorem,
, so
Simplifying, we have
.
Note the circumcircle of has radius
, so
and has an arc of
degrees, so
. Let
.
, where both
and
are
since triangle
must be acute. Since
is an increasing function over
,
is also increasing function over
.
maximizes at
maximizes at
. This squared is
, and
.
See also
2008 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.