Difference between revisions of "2006 AIME I Problems/Problem 15"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
Given that a sequence satisfies <math> x_0=0 </math> and <math> |x_k|=|x_{k-1}+3| </math> for all integers <math> k\ge 1, </math> find the minimum possible value of <math> |x_1+x_2+\cdots+x_{2006}|. </math>
 
Given that a sequence satisfies <math> x_0=0 </math> and <math> |x_k|=|x_{k-1}+3| </math> for all integers <math> k\ge 1, </math> find the minimum possible value of <math> |x_1+x_2+\cdots+x_{2006}|. </math>
 
 
 
 
  
 
== Solution ==
 
== Solution ==
 
+
{{solution}}
 
 
 
 
  
 
== See also ==
 
== See also ==
 +
* [[2006 AIME I Problems/Problem 14 | Previous problem]]
 
* [[2006 AIME I Problems]]
 
* [[2006 AIME I Problems]]

Revision as of 14:41, 25 August 2006

Problem

Given that a sequence satisfies $x_0=0$ and $|x_k|=|x_{k-1}+3|$ for all integers $k\ge 1,$ find the minimum possible value of $|x_1+x_2+\cdots+x_{2006}|.$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also