Difference between revisions of "2011 AMC 10B Problems/Problem 24"
(→Solution 3) |
(→See Also) |
||
Line 15: | Line 15: | ||
==Solution 3== | ==Solution 3== | ||
We want to find the smallest <math>m</math> such that there will be an integral solution to <math>y=mx+2</math> with <math>0<x\le100</math>. We first test A, but since the denominator has a <math>101</math>, <math>x</math> must be a nonzero multiple of <math>101</math>, but it then will be greater than <math>100</math>. We then test B. <math>y=\frac{50}{99}x+2</math> yields the solution <math>(99,52)</math> which satisfies <math>0<x\le100</math>. Checking the answer choices, we know that the smallest possible <math>a</math> must be <math>\frac{50}{99}\implies\boxed{\textbf{(B)}}</math> | We want to find the smallest <math>m</math> such that there will be an integral solution to <math>y=mx+2</math> with <math>0<x\le100</math>. We first test A, but since the denominator has a <math>101</math>, <math>x</math> must be a nonzero multiple of <math>101</math>, but it then will be greater than <math>100</math>. We then test B. <math>y=\frac{50}{99}x+2</math> yields the solution <math>(99,52)</math> which satisfies <math>0<x\le100</math>. Checking the answer choices, we know that the smallest possible <math>a</math> must be <math>\frac{50}{99}\implies\boxed{\textbf{(B)}}</math> | ||
− | |||
− | |||
− | |||
− |
Revision as of 21:16, 26 December 2018
Contents
Problem
A lattice point in an -coordinate system is any point where both and are integers. The graph of passes through no lattice point with for all such that . What is the maximum possible value of ?
Solution 1
For to not pass through any lattice points with is the same as saying that for , or in other words, is not expressible as a ratio of positive integers with . Hence the maximum possible value of is the first real number after that is so expressible.
For each , the smallest multiple of which exceeds is respectively, and the smallest of these is .
Solution 2
We see that for the graph of to not pass through any lattice points, the denominator of must be greater than , or else it would be canceled by some which would make an integer. By using common denominators, we find that the order of the fractions from smallest to largest is . We can see that when , would be an integer, so therefore any fraction greater than would not work, as substituting our fraction for would produce an integer for . So now we are left with only and . But since and , we can be absolutely certain that there isn't a number between and that can reduce to a fraction whose denominator is less than or equal to . Since we are looking for the maximum value of , we take the larger of and , which is .
Solution 3
We want to find the smallest such that there will be an integral solution to with . We first test A, but since the denominator has a , must be a nonzero multiple of , but it then will be greater than . We then test B. yields the solution which satisfies . Checking the answer choices, we know that the smallest possible must be