Difference between revisions of "2005 Canadian MO Problems/Problem 4"

(Categorization)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
 
Let <math>ABC</math> be a triangle with circumradius <math>R</math>, perimeter <math>P</math> and area <math>K</math>. Determine the maximum value of <math>KP/R^3</math>.
 
Let <math>ABC</math> be a triangle with circumradius <math>R</math>, perimeter <math>P</math> and area <math>K</math>. Determine the maximum value of <math>KP/R^3</math>.
 +
 
==Solution==
 
==Solution==
 +
 
==See also==
 
==See also==
 +
 
*[[2005 Canadian MO]]
 
*[[2005 Canadian MO]]
 +
 +
 +
[[Category:Olympiad Geometry Problems]]

Revision as of 13:19, 4 September 2006

Problem

Let $ABC$ be a triangle with circumradius $R$, perimeter $P$ and area $K$. Determine the maximum value of $KP/R^3$.

Solution

See also