1978 AHSME Problems/Problem 1

Revision as of 20:16, 25 February 2020 by Peopl (talk | contribs)

Problem 1

If $1-\frac{4}{x}+\frac{4}{x^2}=0$, then $\frac{2}{x}$ equals

$\textbf{(A) }-1\qquad \textbf{(B) }1\qquad \textbf{(C) }2\qquad \textbf{(D) }-1\text{ or }2\qquad  \textbf{(E) }-1\text{ or }-2$

Solution 1

By guessing and checking, 2 works. $\frac{2}{x} = \boxed{\textbf{(B)  }1}$ ~awin

Solution 2

Multiplying each side by $x^2$, we get $x^2-4x+4 = 0$. Factoring, we get $(x-2)(x-2) = 0$. Therefore, $x = 2$. $\frac{2}{x} = \boxed{\textbf{(B)  }1}$ ~awin

Solution 3

Directly factoring, we get $(1-\frac{2}{x})^2 = 0$. Thus $\frac{2}{x}$ must equal $\boxed{\textbf{(B)  }1}$