The Apple Method

Revision as of 00:56, 6 May 2020 by Mathiscool12 (talk | contribs) (Extensions)

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Examples

1. Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set $\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that $\textcolor{red}{(\textcolor{green}{^{^(}})}^2= 6+\textcolor{red}{(\textcolor{green}{^{^(}})}$.

Solving, we get $\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}$

2. If \[\sqrt{x\cdot\sqrt{x\cdot\sqrt{x\cdots}}} = 5\]Find x.

3. Evaluate: \[\frac{1^2+2^2+3^2+\cdots}{1^2+3^3+5^2+\cdots}\]

Extensions

The pear method

When more than one variable is needed, pears, bananas, etc. are usually used.

Why Apple?

When you use the Apple Method, you can box what you are substituting with the apple. When you use $x$ as a substitution, instead of actually boxing it, you are just crossing it out.