1997 USAMO Problems/Problem 5
Contents
Problem
Prove that, for all positive real numbers
.
Solution 1
Because the inequality is homogenous (i.e. can be replaced with without changing the inequality other than by a factor of for some ), without loss of generality, let .
Lemma: Proof: Rearranging gives , which is a simple consequence of and
Thus, by :
Solution 2
Rearranging the AM-HM inequality, we get . Letting , , and , we get By AM-GM on , , and , we have So, .
See Also
1997 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.