2020 IMO Problems/Problem 2
Problem 2. The real numbers are such that and . Prove that
Solution
Using Weighted AM -GM we get,
So,
Now notice that ,
\[
a+2b+3c+4d \le
\begin{cases}
a+3b+3c+3d,& \text{as } d\le b\\ 3a+3b+3c+d, &\text{as} d\le a \\ 3a+b+3c+3d ,& \text{as} b+d\le 2a \\ 3a +3b +c +3d ,& \text{as} 2c+d \le 2a+b
\end{cases}
\]
So, We get ,
Now , For equality we must have
On that case we get ,