2007 AIME I Problems/Problem 12
Problem
In isosceles triangle , is located at the origin and is located at (20,0). Point is in the first quadrant with and angle . If triangle is rotated counterclockwise about point until the image of lies on the positive -axis, the area of the region common to the original and the rotated triangle is in the form , where are integers. Find .
Solution
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Solution 1
Call the vertices of the new triangle (, the origin, is a vertex of both triangles). and intersect at a single point, . intersect at two points; the one with the higher y-coordinate will be , and the other . The intersection of the two triangles is a quadrilateral . Notice that we can find this area by subtracting .
Since and both have measures , both of their complements are , and . We know that , and since the angles of a triangle add up to , we find that .
So is a . It can be solved by drawing an altitude splitting the angle into and angles – this forms a right triangle and a isosceles right triangle. Since we know that , the base of the triangle is , the height is , and the base of the is . Thus, the total area of .
Now, we need to find , which is a right triangle. We can find its base by subtracting from . is also a triangle, so we find that . .
To solve , note that . Through algebra, we can calculate :
To finish, find . The solution is .
Solution 2
Redefine the points in the same manner as the last time (, intersect at , , and ). This time, notice that .
The area of . The altitude of is clearly . The tangent addition rule yields (see above). Thus, .
The area of (with a side on the y-axis) can be found by splitting it into two triangles, and right triangles. . The sine addition rule shows that . , in terms of the height of , is equal to . .
The area of was found in the previous solution to be .
Therefore, , and our answer is .
See also
2007 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |