1995 IMO Problems/Problem 2
Contents
[hide]Problem
(Nazar Agakhanov, Russia)
Let be positive real numbers such that
. Prove that
Solution
Solution 1
We make the substitution ,
,
. Then
Since
and
are similarly sorted sequences, it follows from the Rearrangement Inequality that
By the Power Mean Inequality,
Symmetric application of this argument yields
Finally, AM-GM gives us
as desired.
Solution 2
We make the same substitution as in the first solution. We note that in general,
It follows that
and
are similarly sorted sequences. Then by Chebyshev's Inequality,
By AM-GM,
, and by Nesbitt's Inequality,
The desired conclusion follows.
Solution 3
Without clever substitutions:
By Cauchy-Schwarz, Dividing by
gives
by AM-GM.
Solution 3b
Without clever notation:
By Cauchy-Schwarz,
Dividing by and noting that
by AM-GM gives
as desired.
Solution 4
After the setting and as
so
concluding
By Titu Lemma,
Now by AM-GM we know that
and
which concludes to
Therefore we get
Hence our claim is proved ~~ Aritra12
Solution 5
Proceed as in Solution 1, to arrive at the equivalent inequality
But we know that
by AM-GM. Furthermore,
by Cauchy-Schwarz, and so dividing by
gives
as desired.
Solution 6
Without clever substitutions, and only AM-GM!
Note that . The cyclic sum becomes
. Note that by AM-GM, the cyclic sum is greater than or equal to
. We now see that we have the three so we must be on the right path. We now only need to show that
. Notice that by AM-GM,
,
, and
. Thus, we see that
, concluding that
Solution 7 from Brilliant Wiki (Muirheads) =
https://brilliant.org/wiki/muirhead-inequality/
Scroll all the way down Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Solution 8 (AM-GM only)
We are given that and
are positive real numbers such that
This means that by AM-GM, we have
so
Let
for some nonnegative real number
By AM-GM, we also have
Squaring the last two parts of this inequality chain, we have
Manipulating the first two parts of this inequality chain gives
Analogously, we obtain the two inequalities
and
Now by AM-GM, we have
so
Using all of our information, we can conclude that
and the result follows.