2020 CIME II Problems/Problem 9
Solution
We can start by finding the number of solution for smaller repeptitions of . Notice that we can solve by applying the functional inverse to both sides as you would to solve any equation: (We put the absolute value bars because we know that taking the inverse of of both sides involves taking the square root of both sides, and ). From here, it is easy to see that this equation has solutions at and . We can also try for (we will solve more methodically here): The first equation yeilds results, and the second equation yields results for a total of results. It appeats that bas real solutions, giving a total of apparent solutions for the original equation. This makes logical sense considering that is an even polynomial with 2 roots. For a more formal proof, we consider . We are asked to find the number of solutions of the equation in the form . Following from how we colved the first simple case,