2022 AMC 12B Problems/Problem 10

Revision as of 18:21, 17 November 2022 by Ehuang0531 (talk | contribs) (Solution: ce)

Problem

Regular hexagon $ABCDEF$ has side length $2$. Let $G$ be the midpoint of $\overline{AB}$, and let $H$ be the midpoint of $\overline{DE}$. What is the perimeter of $GCHF$?

$\textbf{(A)}\ 4\sqrt3 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 4\sqrt5 \qquad \textbf{(D)}\ 4\sqrt7 \qquad \textbf{(E)}\ 12$

Solution

Consider triangle $AFG$. $AG = 1$ and $AF = 2$. $\angle GAF = 120 ^{\circ}$ because it is an interior angle of a regular hexagon. By the Law of Cosines, we have:

\begin{align*} FG^2 &= AG^2 + AF^2 - 2 \cdot AG \cdot AF \cdot \cos \angle GAF \\ FG^2 &= 1^2 + 2^2 - 2 \cdot 1 \cdot 2 \cdot \cos 120 ^{\circ} \\ FG^2 &= 1^2 + 2^2 - 4 \cdot \left( \frac 12 \right) \\ FG^2 &= 7 \\ FG &= \sqrt 7. \end{align*}

By SAS Congruence, triangles $AFG$, $BCG$, $CDH$, and $EFH$ are congruent, and by CPCTC, quadrilateral $GCHF$ is a rhombus. Therefore, its perimeter is $4 \cdot FG = \boxed{\textbf{(D)} \ 4 \sqrt 7}$.

See Also

2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png