2022 AMC 12B Problems/Problem 25

Revision as of 22:56, 19 November 2022 by Mathboy100 (talk | contribs) (Solution 2 (Coord bash))

Problem

Four regular hexagons surround a square with side length 1, each one sharing an edge with the square, as shown in the figure below. The area of the resulting 12-sided outer nonconvex polygon can be written as $m \sqrt{n} + p$, where $m$, $n$, and $p$ are integers and $n$ is not divisible by the square of any prime. What is $m+n+p$?

$\textbf{(A) } -12 \qquad \textbf{(B) }-4 \qquad  \textbf{(C) } 4 \qquad \textbf{(D) }24 \qquad \textbf{(E) }32$

Solution 1

We calculate the area as the area of the red octagon minus the four purple congruent triangles: [asy]         import geometry;         unitsize(3cm);         draw((1-sqrt(3),1-sqrt(3))--(1-sqrt(3),sqrt(3))--(sqrt(3),sqrt(3))--(sqrt(3),1-sqrt(3))--cycle,dashed); 		filldraw((0,1-sqrt(3))--(1,1-sqrt(3))--(sqrt(3),0)--(sqrt(3),1)--(1,sqrt(3))--(0,sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--cycle,red*0.2+white,red); 		filldraw((1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--cycle,purple*0.2+white,blue); 		filldraw((sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--cycle,purple*0.2+white,blue); 		filldraw((0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--cycle,purple*0.2+white,blue); 		filldraw((0,1-sqrt(3))--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle,purple*0.2+white,blue);         draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle);         draw(shift((1/2,1-sqrt(3)/2))*polygon(6));         draw(shift((1/2,sqrt(3)/2))*polygon(6));         draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6));         draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); [/asy] We first find the important angles in the figure. We note that 2 adjacent hexagons are rotated $90^\circ$ with respect to the other, so the angles between any sides is $150^\circ$. In particular, as the purple triangles are isosceles, they have angles $150^\circ,15^\circ$, and $15^\circ$, and the octagon is equiangular (all its angles are $135^\circ$). Thus, we can draw a square around the octagon, and we note that the ``cut out" triangles are all isosceles right triangles.

Now, we calculate the side length of the square. Note that the hexagon has a height of $\sqrt 3$, so the length of a side of the square is $2\sqrt 3-1$. In particular, the horizontal/vertical sides of the octagon have length $1$, so the legs of the isosceles triangles are \[\frac{2\sqrt3-1-1}2=\sqrt3-1\]Thus, the area of the octagon is \[(2\sqrt3-1)^2-4\cdot\frac 12(\sqrt3-1)^2=5\]Now, we calculate the area of one of the four isosceles triangles. The base of the triangle is $(\sqrt 3-1)\sqrt 2$, so the area is \[\frac 14\mathrm{base length}^2\cdot\tan(\mathrm{base angle})=\frac 14((\sqrt3-1)\sqrt2)^2\cdot\tan15^\circ=\frac 14(8-4\sqrt3)(2-\sqrt3)=7-4\sqrt 3\]Thus, the area of the dodecagon is \[5-4(7-4\sqrt3)=16\sqrt3-23\]Thus the answer is $16+3-23=-4$, or $\boxed{\textbf{(B)}}$.

~cr. naman12

Solution 2 (Coord bash)

[asy]         import geometry;         unitsize(3cm);         draw((0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle);         draw(shift((1/2,1-sqrt(3)/2))*polygon(6));         draw(shift((1/2,sqrt(3)/2))*polygon(6));         draw(shift((sqrt(3)/2,1/2))*rotate(90)*polygon(6));         draw(shift((1-sqrt(3)/2,1/2))*rotate(90)*polygon(6)); 		draw((0,1-sqrt(3))--(1,1-sqrt(3))--(3-sqrt(3),sqrt(3)-2)--(sqrt(3),0)--(sqrt(3),1)--(3-sqrt(3),3-sqrt(3))--(1,sqrt(3))--(0,sqrt(3))--(sqrt(3)-2,3-sqrt(3))--(1-sqrt(3),1)--(1-sqrt(3),0)--(sqrt(3)-2,sqrt(3)-2)--cycle);         pair O = (1/2, 1/2), A = (3 - sqrt3, 3 - sqrt3), B = (-2 + sqrt3, 3 - sqrt3), M = (0, sqrt3), N = (1, sqrt3);         dot(O);         label("$O$", O, NE);         dot(A);         label("$A$", A, NE);         dot(B);         label("$B$", B, NW);         dot(M);         label("$M$", M, NW);         dot(N);         label("$N$", N, NE); [/asy]

Let the center of the square be $O$, the place on the border where the top and the right hexagons intersect $A$, and the place on the border where the top and the left hexagons intersect $B$. Let the origin be $O$. We would like to find the coordinates of $A$.

By symmetry, $A$ lies on the line $y = x$. The equation of the side of the top hexagon that $AB$ is on is $y = -x\sqrt{3} + \frac{3}{2}\sqrt{3} - \frac{1}{2}$. Thus, we can solve for the coordinates of $A$: \[x = -x\sqrt{3} + \frac{3\sqrt{3} - 1}{2}\] \[x(\sqrt{3} + 1) = \frac{3\sqrt{3} - 1}{2}\] \[x = \frac{3\sqrt{3}-1}{2} \cdot \frac{1}{\sqrt{3} + 1}\] \[= \frac{3\sqrt{3}-1}{2(\sqrt{3} + 1)} \cdot \frac{\sqrt{3} - 1}{\sqrt{3} - 1}\] \[= \frac{10 - 4\sqrt{3}}{4}\] \[= \frac{5}{2} - \sqrt{3}\] \[x, y = \frac{5}{2} - \sqrt{3}.\]

This means that we can find the length $AB$, which is equal to $5 - 2\sqrt{3}$. Next, let the top points of the top hexagon be $M$ and $N$. We will find the area of trapezoid $ABMN$. The lengths of the bases are $1$ and $5 - 2\sqrt{3}$, and the height is equal to the $y$-coordinate of $M$ minus the $y$-coordinate of $A$, which is $2\sqrt{3} - 3$. Thus, the area of the trapezoid is \[(2\sqrt{3} - 3)\left(\frac{1 + 5 - 2\sqrt{3}}{2}\right)\] \[= (2\sqrt{3} - 3)(3 - \sqrt{3})\] \[= 6\sqrt{3} + 3\sqrt{3} - 9 - 6\] \[= 9\sqrt{3} - 15.\]

The total area of the figure is the area of a square with side length $AB$ plus four times the area of this trapezoid: \[A = (5 - 2\sqrt{3})^2 + 4(9\sqrt{3} - 15)\] \[= 37 - 20\sqrt{3} + 36\sqrt{3} - 60\] \[= 16\sqrt{3} - 23.\]

Our answer is $16 + 3 - 23 = \boxed{\textbf{(B) }-4}$.

~mathboy100

Video Solution

https://youtu.be/QYclqXWnxxE

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See Also

2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png