1998 USAMO Problems/Problem 3

Revision as of 12:31, 23 August 2023 by Dwrensha (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $a_0,\cdots a_n$ be real numbers in the interval $\left(0,\frac {\pi}{2}\right)$ such that \[\tan{\left(a_0 - \frac {\pi}{4}\right)} + \tan{\left(a_1 - \frac {\pi}{4}\right)} + \cdots + \tan{\left(a_n - \frac {\pi}{4}\right)}\ge n - 1\] Prove that $\tan{\left(a_0\right)}\tan{\left(a_1\right)}\cdots \tan{\left(a_n\right)}\ge n^{n + 1}$.

Solution

Let $y_i = \tan{(a_i - \frac {\pi}{4})}$, where $0\le i\le n$. Then we have

  • $y_0 + y_1 + \cdots + y_n\ge n - 1$
  • $1 + y_i\ge \sum_{j\neq i}{(1 - y_j)}$
  • $\frac {1 + y_i}{n}\ge \frac {1}{n}\sum_{j\neq i}{(1 - y_j)}$

By AM-GM,

\begin{align*} \frac {1}{n}\sum_{j\neq i}{(1 - y_j)} &\geq \prod_{j\neq i}{(1 - y_j)^{\frac {1}{n}}}\\ \frac {1 + y_i}{n} &\geq \prod_{j\neq i}{(1 - y_j)^{\frac {1}{n}}}\\ \prod_{i = 0}^n\frac{1 + y_i}{n} &\geq \prod_{i = 0}^{n} {\prod_{j\neq i} {(1 - y_j)}^{\frac {1}{n}}}\\ \prod_{i = 0}^n\frac {1 + y_i}{n} &\geq \prod_{i = 0}^n{(1 - y_i)}\\ \prod_{i = 0}^n\frac {1 + y_i}{1 - y_i} &\geq \prod_{i = 0}^n{n}\\ \prod_{i = 0}^n\frac {1 + y_i}{1 - y_i} &\geq n^{n + 1} \end{align*}

Note that by the addition formula for tangents, \[\tan{(a_i)} = \tan{[(a_i - \frac {\pi}{4}) + \frac {\pi}{4}]} = \frac {1 + \tan{(a_i - \frac {\pi}{4})}}{1 - \tan{(a_i - \frac {\pi}{4})}} = \frac {1 + y_i}{1 - y_i}\].

So $\prod_{i = 0}^n{\frac {1 + y_i}{1 - y_i}} = \tan{(a_0)}\tan{(a_1)}\cdots \tan{(a_n)}\ge n^{n + 1}$, as desired. $\blacksquare$

See Also

1998 USAMO (ProblemsResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png