2023 USAMO Problems/Problem 6

Revision as of 17:04, 6 August 2023 by Zhaom (talk | contribs) (Undo revision 196490 by Zhaom (talk))

Problem

Let ABC be a triangle with incenter $I$ and excenters $I_a$, $I_b$, $I_c$ opposite $A$, $B$, and $C$, respectively. Given an arbitrary point $D$ on the circumcircle of $\triangle ABC$ that does not lie on any of the lines $IIa$, $I_bI_c$, or $BC$, suppose the circumcircles of $\triangle DIIa$ and $\triangle DI_bI_c$ intersect at two distinct points $D$ and $F$. If $E$ is the intersection of lines $DF$ and $BC$, prove that $\angle BAD = \angle EAC$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png