1997 USAMO Problems/Problem 5

Revision as of 12:55, 25 March 2024 by Kevin Liu (talk | contribs)

Problem

Prove that, for all positive real numbers $a, b, c,$

$\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{a^3+c^3+abc} \le \frac{1}{abc}$.

Solution 1

Because the inequality is homogenous (i.e. $(a, b, c)$ can be replaced with $(ka, kb, kc)$ without changing the inequality other than by a factor of $k^n$ for some $n$), without loss of generality, let $abc = 1$.

Lemma: \[\frac{1}{a^3 + b^3 + 1} \le \frac{c}{a + b + c}.\] Proof: Rearranging gives $(a^3 + b^3) c + c \ge a + b + c$, which is a simple consequence of $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ and \[(a^2 - ab + b^2)c \ge (2ab - ab)c = abc = 1.\]

Thus, by $abc = 1$: \[\frac{1}{a^3 + b^3 + abc} + \frac{1}{b^3 + c^3 + abc} + \frac{1}{c^3 + a^3 + abc}\] \[\le \frac{c}{a + b + c} + \frac{a}{a + b + c} + \frac{b}{a + b + c} = 1 = \frac{1}{abc}.\]

Solution 2

Rearranging the AM-HM inequality, we get $\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \le \frac{9}{x+y+z}$. Letting $x=a^{3}+b^{3}+abc$, $y=b^{3}+c^{3}+abc$, and $z=c^{3}+a^{3}+abc$, we get \[\frac{1}{a^{3}+b^{3}+abc}+\frac{1}{b^{3}+c^{3}+abc}+\frac{1}{c^{3}+a^{3}+abc} \le \frac{9}{2a^{3}+2b^{3}+2c^{3}+3abc}.\] By AM-GM on $a^{3}$, $b^{3}$, and $c^{3}$, we have \[a^{3}+b^{3}+c^{3} \ge 3abc \Rightarrow 2a^{3}+2b^{3}+2c^{3}+3abc \ge 9abc \Rightarrow \frac{9}{2a^{3}+2b^{3}+2c^{3}+3abc} \le \frac{1}{abc}.\] So, $\frac{1}{a^{3}+b^{3}+abc}+\frac{1}{b^{3}+c^{3}+abc}+\frac{1}{c^{3}+a^{3}+abc} \le \frac{1}{abc}$. -Tigerzhang

$\textbf{WARNING:}$

This solution doesn’t work because $(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 9$, so $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

Solution 3

If we multiply each side by $abc$, we get that we must just prove that \[\frac{abc}{a^3+b^3+abc} + \frac{abc}{b^3+c^3+abc} + \frac{abc}{c^3+a^3+abc} \leq 1\] If we divide our LHS equation, we get that \[\frac{1}{\frac{a^3+b^3+abc}{abc}} +\frac{1}{\frac{b^3+c^3+abc}{abc}} + \frac{1}{\frac{c^3+a^3+abc}{abc}}\] \[= \frac{1}{\frac{a^2}{bc} + \frac{b^2}{ac} + 1} +\frac{1}{\frac{b^2}{ac} + \frac{c^2}{ab} + 1}  + \frac{1}{\frac{c^2}{ab} + \frac{a^2}{bc} + 1}\] Make the astute observation that by Titu's Lemma, \[\frac{a^2}{bc} + \frac{b^2}{ac} \geq \frac{\left(a+b\right)^2}{bc+ ac}\] \[\sum_{cyc}\frac{\left(a+b\right)^2}{bc+ ac} \leq \sum_{cyc}\frac{a^2}{bc} + \frac{b^2}{ac}\] Therefore: \[\sum_{cyc} \frac{1}{\frac{\left(a+b\right)^2}{c\left(a+b\right)  }+1} \geq \sum_{cyc} \frac{1}{\frac{a^2}{bc} + \frac{b^2}{ac} + 1}\] If we expand it out, we get that \[\sum_{cyc} \frac{1}{\frac{\left(a+b\right)^2}{c\left(a+b\right)  }+1}  = \frac{a+b+c}{a+b+c} = 1\] Since our original equation is less than this, we get that \[\sum_{cyc} \frac{1}{\frac{a^2}{bc} + \frac{b^2}{ac} + 1} \leq 1\] \[\sum_{cyc} \frac{abc}{a^3+b^3+abc}\leq 1\] \[\sum_{cyc} \frac{1}{a^3+b^3+abc} \leq \frac{1}{abc}\]

-KEVIN_LIU

See Also

1997 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png