User:Fura3334

Revision as of 05:02, 17 February 2024 by Fura3334 (talk | contribs) (Problem X)

IF YOU'RE AN ADMIN, PLS DONT DELETE THIS PAGE, IM WORKING ON SUS MOCK AIME (well, if i haven't edited this page for 2 weeks, you can delete it)

Problem 1

Kube the robot completes a task repeatedly, each time taking $t$ minutes. One day, Furaken asks Kube to complete $n$ identical tasks in $20$ hours. If Kube works slower and spends $t+6$ minutes on each task, it will finish $n$ tasks in exactly $20$ hours. If Kube works faster and spends $t-6$ minutes on each task, it can finish $n+1$ tasks in $20$ hours with $12$ minutes to spare. Find $t$.

Problem 2

Let $x$, $y$, $z$ be positive real numbers such that

  • $xz = 1000$
  • $z = 100\sqrt{xy}$
  • $10^{\lg x\lg y + 2\lg y\lg z + 3\lg z\lg x} = 2 \cdot 5^{12}$

Find $\lfloor x+y+z \rfloor$.

Problem 3

Let $p$ be an odd prime such that $2^{p-7}\equiv3 \pmod{p}$. Find $p$.

Problem 4

Susmockaimep4diagram.png

For triangle $ABC$, let $M$ be the midpoint of $AC$. Extend $BM$ to $D$ such that $MD=2.8$. Let $E$ be the point on $MB$ such that $ME=0.8$, and let $F$ be the point on $MC$ such that $MF=1$. Line $EF$ intersects line $CD$ at $P$ such that $\tfrac{DP}{PC}=\tfrac23$. Given that $EF$ is parallel to $BC$, the maximum possible area of triangle $ABC$ can be written as $\tfrac{p}{q}$ where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

Problem 5

Let $1 + \sqrt3 + \sqrt{13}$ be a root of the polynomial $x^4 + ax^3 + bx^2 + cx + d$ where $a$, $b$, $c$, $d$ are integers. Find $d$.

Problem 6

Susmockaimep6diagram.png

Fly has a large number of red, yellow, green and blue pearls. Fly is making a necklace consisting of $8$ pearls as shown in the diagram. One slot already has a red pearl, and another slot has a green pearl. Find the number of ways to fill the $6$ remaining slots such that any two pearls that are connected directly have different colors.

Problem X

(I haven't decided the problem number yet)

Let $N=109007732774081$. Given that $N=pq$ where $p$, $q$ are distinct primes greater than $1000$, and that $N$ cannot be expressed as the sum of 2 perfect squares, find the remainder when \[\frac{\varphi(N)^2}{2} - (\varphi(N)+1)^6\] is divided by 144.