2024 AMC 10A Problems/Problem 24

Revision as of 15:31, 8 November 2024 by Juwushu (talk | contribs)

Problem

A bee is moving in three-dimensional space. A fair six-sided die with faces labeled $A^+, A^-, B^+, B^-, C^+,$ and $C^-$ is rolled. Suppose the bee occupies the point $(a,b,c).$ If the die shows $A^+$, then the bee moves to the point $(a+1,b,c)$ and if the die shows $A^-,$ then the bee moves to the point $(a+1,b,c).$ Analogous moves are made with the other four outcomes. Suppose the bee starts at the point $(0,0,0)$ and the die is rolled four times. What is the probability that the bee traverses four distinct edges of some unit cube?

$\textbf{(A) }\frac{1}{54}\qquad\textbf{(B) }\frac{7}{54}\qquad\textbf{(C) }\frac{1}{6}\qquad\textbf{(D) }\frac{5}{18}\qquad\textbf{(E) }\frac{2}{5}$

Solution 1

Juwushu will finish this. WLOG, assume that the first two moves are equal for all possible combinations, since the direction does not matter. The first move has a $\frac{6}{6}$ probability of being along one of the 8 unit cubes around the origin, and the second move has a $\frac{4}{6}$ chance. Now, there are two cases. We are currently on one of the points of the $2$ by $2$ squares that are aligned with the axes.