2024 AMC 10B Problems/Problem 18

Revision as of 00:51, 14 November 2024 by Lprado (talk | contribs)

Solution 1

First note that the totient function of $125$ is $100$. We can set up two cases, which depend on whether a number is relatively prime to $125$.

If $n$ is relatively prime to $125$, then $n^{100} \equiv 1 \pmod{125}$ because of Euler's Totient Theorem.

If $n$ is not relatively prime to $125$, it must be have a factor of $5$. Express $n$ as $5m$, where $m$ is some integer. Then $n^{100} \equiv (5m)^{100} \equiv 5^{100}\cdot m^{100} \equiv 125 \cdot 5^{97} \cdot m^{100} \equiv 0 \pmod{125}$.

Therefore, $n^{100}$ can only be congruent to $0$ or $1 \pmod{125}$. Our answer is $\boxed{2}$. ~lprado