2002 AMC 12P Problems/Problem 25

Revision as of 16:59, 14 December 2024 by The 76923th (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $a$ and $b$ be real numbers such that $\sin{a} + \sin{b} = \frac{\sqrt{2}}{2}$ and $\cos {a} + \cos {b} = \frac{\sqrt{6}}{2}.$ Find $\sin{(a+b)}.$

$\text{(A) }\frac{1}{2} \qquad \text{(B) }\frac{\sqrt{2}}{2} \qquad \text{(C) }\frac{\sqrt{3}}{2} \qquad \text{(D) }\frac{\sqrt{6}}{2} \qquad \text{(E) }1$

Solution

Sum to product gives us

\[2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{2}}{2}\]

\[2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2}) = \frac{\sqrt{6}}{2}\]

Dividing these equations tells us that $\tan(\frac{a+b}{2}) = \frac{1}{\sqrt{3}}$, so $\frac{a+b}{2} = \frac{\pi}{6} + \pi n$ for an integer $n$, so $\sin(a+b) = \sin (\frac{\pi}{3} + 2\pi n) = \frac{\sqrt{3}}{2}$. The answer is $\boxed{\text{(C)}}$.

~alexanderruan

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png