Trivial Inequality

Revision as of 23:47, 17 June 2006 by Me@home (talk | contribs) (Instructive National Math Olympiad Problem)

The Inequality

The trivial inequality states that ${x^2 \ge 0}$ for all x. This is a rather useful inequality for proving that certain quantities are non-negative. The inequality appears to be obvious and unimportant, but it can be a very powerful problem solving technique.

Applications

Maximizing and minimizing quadratic functions

After Completing the square, the trivial inequality can be applied to determine the extrema of a quadratic function.

USA AIME 1992, Problem 13

Triangle $ABC$ has $AB=9$ and $BC: AC=40: 41$. What's the largest area that this triangle can have?

Solution: First, consider the triangle in a coordinate system with vertices at $(0,0)$, $(9,0)$, and $(a,b)$.
Applying the distance formula, we see that $\frac{ \sqrt{a^2 + b^2} }{ \sqrt{ (a-9)^2 + b^2 } } = \frac{40}{41}$.

We want to maximize $b$, the height, with $9$ being the base. Simplifying gives $-a^2 -\frac{3200}{9}a +1600 = b^2$. Recalling that the max/min value of a quadratic is $\frac{4ac-b^2}{4a}$, we see that $\frac{4(-1)(1600) - \left(\frac{3200}{9}\right)^2 }{(-1)(4)} = b^2$. Solving for $b$, $b = \frac{40\cdot41}{9}$ Thus, the area is $9\cdot\frac{1}{2} \cdot \frac{40*41}{9} = 820$.

Solution credit to: 4everwise

Note: I am still editing this...