2008 IMO Problems/Problem 3

Revision as of 20:39, 3 September 2008 by Vbarzov (talk | contribs)

(still editing...)

For each sufficiently large prime $p$ of the form $4k+1$, we shall find a corresponding $n$ satisfying the required condition with the prime number in question being $p$. Since there exist infinitely many such primes and, for each of them, $n \ge \sqrt{p-1}$, we will have found infinitely many distinct $n$ satisfying the problem.

Take a prime $p$ of the form $4k+1$ and consider its "sum-of-two squares" representation $p=a^2+b^2$, which we know to exist for all such primes. If $a=1$ or $b=1$, then $n=b$ or $n=a$ is our guy, and $p=n^2+1 > 2n+\sqrt(2n)$ as long as $p$ (and hence $n$) is large enough.