1985 AJHSME Problems/Problem 25

Revision as of 16:08, 3 July 2013 by MSTang (talk | contribs) (See Also)

Problem

Five cards are lying on a table as shown.

\[\begin{matrix} & \qquad & \boxed{\tt{P}} & \qquad & \boxed{\tt{Q}} \\  \\ \boxed{\tt{3}} & \qquad & \boxed{\tt{4}} & \qquad & \boxed{\tt{6}} \end{matrix}\]

Each card has a letter on one side and a whole number on the other side. Jane said, "If a vowel is on one side of any card, then an even number is on the other side." Mary showed Jane was wrong by turning over one card. Which card did Mary turn over?

$\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ \text{P} \qquad \text{(E)}\ \text{Q}$

Solution

Logically, Jane's statement is equivalent to its contrapositive,

If an even number is not on one side of any card, then a vowel is not on the other side.

For Mary to show Jane wrong, she must find a card with an odd number on one side, and a vowel on the other side. The only card that could possibly have this property is the card with $3$, which is answer choice $\boxed{\text{A}}$

See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last
Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png