1963 IMO Problems/Problem 4

Revision as of 12:25, 16 October 2012 by Brian22 (talk | contribs) (Solution)

Problem

Find all solutions $x_1,x_2,x_3,x_4,x_5$ of the system

$\begin{eqnarray}

x_5+x_2&=&yx_1\\ x_1+x_3&=&yx_2\\ x_2+x_4&=&yx_3\\ x_3+x_5&=&yx_4\\

x_4+x_1&=&yx_5,\end{eqnarray}$ (Error compiling LaTeX. Unknown error_msg)

where $y$ is a parameter.

Solution

Notice: The following words are Chinese.

首先,我们可以将以上5个方程相加,得到:

$2(x_1+x_2+x_3+x_4+x_5)=y(x_1+x_2+x_3+x_4+x_5)$

$x_1+x_2+x_3+x_4+x_5=0$时,因为$x_1,x_2,x_3,x_4,x_5$关于原方程组轮换对称,所以

$x_1=x_2=x_3=x_4=x_5=0$

若反之,则方程两边同除以$(x_1+x_2+x_3+x_4+x_5)$,得到$y=2$,显然解为

$x_1=x_2=x_3=x_4=x_5$

综上所述,若$y=2$,最终答案为$x_1=x_2=x_3=x_4=x_5$,否则答案为$x_1=x_2=x_3=x_4=x_5=0$


The solution in English (translated by Google Translate):

First of all, we can add the five equations to get:

$2(x_1+x_2+x_3+x_4+x_5)=y(x_1+x_2+x_3+x_4+x_5)$

When $x_1+x_2+x_3+x_4+x_5=0$, Because $x_1,x_2,x_3,x_4,x_5$ is symmetric in the original equations,

$x_1=x_2=x_3=x_4=x_5=0$

Otherwise, dividing both sides by $(x_1+x_2+x_3+x_4+x_5$, we get $y=2$, and clearly

$x_1=x_2=x_3=x_4=x_5$

Summarizing, if $y=2$, then the answer is of the form $x_1=x_2=x_3=x_4=x_5$. Otherwise, $x_1=x_2=x_3=x_4=x_5=0$.

See Also

1963 IMO (Problems) • Resources
Preceded by
Problem 3
1 2 3 4 5 6 Followed by
Problem 5
All IMO Problems and Solutions