1986 AJHSME Problems/Problem 25
Problem
Which of the following sets of whole numbers has the largest average?
Solution
Solution 1
From to there are (see floor function) multiples of , and their average is
$\begin{align*} \frac{2\cdot 1+2\cdot 2+2\cdot 3+\cdots + 2\cdot 50}{50} &= \frac{2(1+2+3+\cdots +50)}{50} \\ &= \frac{2\cdot \frac{50\cdot 51}{2}}{50} \\ &= \frac{2\cdot 51}{2} \\ &= 51 \\ \end{align*}$ (Error compiling LaTeX. Unknown error_msg)
Similarly, we can find that the average of the multiples of between and is , the average of the multiples of is , the average of the multiples of is , and the average of the multiples of is , so the one with the largest average is
Solution 2
You can just add the first term and the last term, and see which one is the biggest. 2+100=102, 3+99=102, 4+100=104, 5+100=105, 6+96=102. Therefore, the answer is multiples of five because it has the highest number.
See Also
1986 AJHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |