2010 AMC 10A Problems/Problem 22
Problem
Eight points are chosen on a circle, and chords are drawn connecting every pair of points. No three chords intersect in a single point inside the circle. How many triangles with all three vertices in the interior of the circle are created?
Solution
To choose a chord, we know that two points must be chosen. This implies that for three chords to create a triangle and not intersect at a single point, six points need to be chosen. Therefore, the answer is which is equivalent to 28,