1999 AHSME Problems/Problem 6

Revision as of 19:09, 2 June 2011 by PhiReKaLk6781 (talk | contribs) (Added solution)

What is the sum of the digits of the decimal form of the product $2^{1999}\cdot 5^{2001}$?

$\textbf{(A)}\ 2\qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ 10$

Solution

$2^{1999}\cdot5^{2001}=2^{1999}\cdot5^{1999}\cdot5^{2}=25\cdot10^{1999}$, a number with the digits "25" followed by 1999 zeros. The sum of the digits in the decimal form would be $2+5=7$, thus making the answer $\boxed{D}$.