2013 AMC 10A Problems/Problem 19

Revision as of 20:51, 28 December 2019 by Gr8song (talk | contribs) (Solution)

Problem

In base $10$, the number $2013$ ends in the digit $3$. In base $9$, on the other hand, the same number is written as $(2676)_{9}$ and ends in the digit $6$. For how many positive integers $b$ does the base-$b$-representation of $2013$ end in the digit $3$?


$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 16\qquad\textbf{(E)}\ 18$

Solution

We want the integers $b$ such that $2013\equiv 3\pmod{b} \Rightarrow b$ is a factor of $2010$. Since $2010=2 \cdot 3 \cdot 5 \cdot 67$, it has $(1+1)(1+1)(1+1)(1+1)=16$ factors. Since $b$ cannot equal $1, 2,$ or $3$, as these cannot have the digit $3$ in their base representations, our answer is $16-3=\boxed{\textbf{(C) }13}$

See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png