2013 AMC 8 Problems/Problem 24
Problem
Squares ,
, and
are equal in area. Points
and
are the midpoints of sides
and
, respectively. What is the ratio of the area of the shaded pentagon
to the sum of the areas of the three squares?
Solution 1
First let (where
is the side length of the squares) for simplicity. We can extend
until it hits the extension of
. Call this point
. The area of triangle
then is
The area of rectangle
is
. Thus, our desired area is
. Now, the ratio of the shaded area to the combined area of the three squares is
.
Solution 2
Let the side length of each square be .
Let the intersection of and
be
.
Since ,
. Since
and
are vertical angles, they are congruent. We also have
by definition.
So we have by
congruence. Therefore,
.
Since and
are midpoints of sides,
. This combined with
yields
.
The area of trapezoid is
.
The area of triangle is
.
So the area of the pentagon is
.
The area of the squares is
.
Therefore, .
Solution 3
Let the intersection of and
be
.
Now we have and
.
Because both triangles has a side on congruent squares therefore .
Because and
are vertical angles
.
Also both and
are right angles so
.
Therefore by AAS(Angle, Angle, Side) .
Then translating/rotating the shaded into the position of
So the shaded area now completely covers the square
Set the area of a square as
Therefore, .
See Also
2013 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.