1977 Canadian MO Problems/Problem 5

Revision as of 14:53, 7 October 2014 by Timneh (talk | contribs) (Problem)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A right circular cone of base radius $1$ cm and slant height of $3$ cm is given. $P$ is a point on the circumference of the base and the shortest path from $P$ around the cone is drawn (see diagram). What is the minimum distance from the vertex $V$ to this path?


[asy] path p1=yscale(.25)*arc((0,0),1,0,180); path p2=yscale(.25)*arc((0,0),1,0,-180); path q1=shift(-.25,.4)*rotate(30)*xscale(.85)*p1; path q2=shift(-.25,.4)*rotate(30)*xscale(.85)*p2; draw(p2,black);draw(q2,black); draw(p1,dashed);draw(q1,dashed); draw((-1,0)--(-.5,2.4)--(1,0)); MP("P",(-1,0),W);MP("V",(-.5,2.4),N); draw((-.2,2.5)--(1.2,.2),arrow=ArcArrow()); draw((1.2,.2)--(-.2,2.5),arrow=ArcArrow()); draw((0,0)--(1,0),arrow=ArcArrow()); draw((1,0)--(0,0),arrow=ArcArrow()); MP("1 cm",(.5,.04),S);MP("3 cm",(.5,1.35),NE); [/asy]

Solution