1973 Canadian MO Problems/Problem 4

Revision as of 17:19, 8 October 2014 by Timneh (talk | contribs) (Problem)

Problem

[asy] size(200); pair A=dir(120), B=dir(80); for(int k=0;k<9;++k) { pair C=dir(120-(40)*(k+2)); D(A--B); MP("P_{"+string(k)+"}",A,11,A); A=B;B=C; }  for(int k=0;k<3;++k) { pair A1=dir(120-(40)*(3*k)); pair B1=dir(120-(40)*(3*k+2)); pair C1=dir(120-(40)*(3*k+3)); D(A1--B1); D(A1--C1); } [/asy]

The figure shows a (convex) polygon with nine vertices. The six diagonals which have been drawn dissect the polygon into the seven triangles: $P_{0}P_{1}P_{3},~ P_{0}P_{3}P_{6},~  P_{0}P_{6}P_{7},~ P_{0}P_{7}P_{8},~  P_{1}P_{2}P_{3}, ~ P_{3}P_{4}P_{6},~ P_{4}P_{5}P_{6}$. In how many ways can these triangles be labeled with the names $\triangle_{1}, ~ \triangle_{2}, ~ \triangle_{3}, ~ \triangle_{4}, ~ \triangle_{5},~  \triangle_{6},~  \triangle_{7}$ so that $P_{i}$ is a vertex of triangle $\triangle_{i}$ for $i = 1, 2, 3, 4, 5, 6, 7$? Justify your answer.

Solution

See also

1973 Canadian MO (Problems)
Preceded by
Problem 3
1 2 3 4 5 Followed by
Problem 5