1986 AIME Problems/Problem 5

Revision as of 08:48, 27 January 2007 by Solafidefarms (talk | contribs) (soln+problem+links)

Problem

What is that largest positive integer $n$ for which $n^3+100$ is divisible by $n+10$?

Solution

If $n+10 \mid n^3+100$, $gcd(n^3+100,n+10)=n+10$. Using the Euclidean Algorithm, we have $gcd(n^3+100,n+10)=gcd(-10n^2+100,n+10)=gcd(100n+100,n+10)=gcd(-900,n+10)$, so $n+10$ must divide 900. The greatest integer $n$ for which $n+10$ divides 900 is 890; we can check manually and we find that indeed $900 \mid 890^3+100$.

See also