2011 USAJMO Problems/Problem 3
Problem
For a point in the coordinate plane, let
denote the line passing through
with slope
. Consider the set of triangles with vertices of the form
,
,
, such that the intersections of the lines
,
,
form an equilateral triangle
. Find the locus of the center of
as
ranges over all such triangles.
Solution
Note that all the points belong to the parabola
which we will denote
. This parabola has a focus
and directrix
which we will denote
. We will prove that the desired locus is
.
First note that for any point on
, the line
is the tangent line to
at
. This is because
contains
and because
. If you don't like calculus, you can also verify that
has equation
and does not intersect
at any point besides
. Now for any point
on
let
be the foot of the perpendicular from
onto
. Then by the definition of parabolas,
. Let
be the perpendicular bisector of
. Since
,
passes through
. Suppose
is any other point on
and let
be the foot of the perpendicular from
to
. Then in right
,
is a leg and so
. Therefore
cannot be on
. This implies that
is exactly the tangent line to
at
, that is
. So we have proved Lemma 1: If
is a point on
then
is the perpendicular bisector of
.
We need another lemma before we proceed. Lemma 2: If is on the circumcircle of
with orthocenter
, then the reflections of
across
,
, and
are collinear with
.
Proof of Lemma 2: Say the reflections of and
across
are
and
, and the reflections of
and
across
are
and
. Then we angle chase
where
is the measure of minor arc
on the circumcircle of
. This implies that
is on the circumcircle of
, and similarly
is on the circumcircle of
. Therefore
, and
. So
. Since
,
, and
are collinear it follows that
,
and
are collinear. Similarly, the reflection of
over
also lies on this line, and so the claim is proved.
Now suppose ,
, and
are three points of
and let
,
, and
. Also let
,
, and
be the midpoints of
,
, and
respectively. Then since
and
, it follows that
,
, and
are collinear. By Lemma 1, we know that
,
, and
are the feet of the altitudes from
to
,
, and
. Therefore by the Simson Line Theorem,
is on the circumcircle of
. If
is the orthocenter of
, then by Lemma 2, it follows that
is on
. It follows that the locus described in the problem is a subset of
.
Since we claim that the locus described in the problem is , we still need to show that for any choice of
on
there exists an equilateral triangle with center
such that the lines containing the sides of the triangle are tangent to
. So suppose
is any point on
and let the circle centered at
through
be
. Then suppose
is one of the intersections of
with
. Let
, and construct the ray through
on the same halfplane of
as
that makes an angle of
with
. Say this ray intersects
in a point
besides
, and let
be the perpendicular bisector of
. Since
and
, we have
. By the inscribed angles theorem, it follows that
. Also since
and
are both radii,
is isosceles and
. Let
be the reflection of
across
. Then
, and so
. It follows that
is on
, which means
is the perpendicular bisector of
.
Let intersect
in points
and
and let
be the point diametrically opposite to
on
. Also let
intersect
at
. Then
. Therefore
is a
right triangle and so
. So
and by the inscribed angles theorem,
. Since
it follows that
is and equilateral triangle with center
.
By Lemma 2, it follows that the reflections of across
and
, call them
and
, lie on
. Let the intersection of
and the perpendicular to
through
be
, the intersection of
and the perpendicular to
through
be
, and the intersection of
and the perpendicular to
through
be
. Then by the definitions of
,
, and
it follows that
for
and so
,
, and
are on
. By lemma 1,
,
, and
. Therefore the intersections of
,
, and
form an equilateral triangle with center
, which finishes the proof.
--Killbilledtoucan
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.