2017 AMC 12B Problems/Problem 18
Revision as of 02:17, 17 February 2017 by Obsessedwithmath (talk | contribs)
Problem
The diameter of a circle of radius is extended to a point outside the circle so that . Point is chosen so that and line is perpendicular to line . Segment intersects the circle at a point between and . What is the area of ?
Solution 1
Let be the center of the circle. Note that . However, by Power of a Point, , so . Now . Since .
Solution 2: Similar triangles
is the diameter of the circle, so is a right angle, and therefore by AAA similarity, .
Because of this, , so .
Likewise, , so .
Thus the area of .
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.