Circular Inversion
Note: Page is under construction
Circular Inversion, sometimes called Geometric Inversion, is a transformation where point in the Cartesian plane is transformed based on a circle with radius and center such that , where is the transformed point on the ray extending from through .
Note that , when inverted, transforms back to . All points outside of are transformed inside , and vice versa. Points on transform to themselves, meaning . Finally, the transformation of is debated on its existence. Some call the transformation the ideal point, which is infinitely far away and in every direction. Others claim that this point does not have an inverse.
Geometric Inversion technically refers to many different types of inversions, however, if Geometric Inversion is used without clarification, Circular Inversion is usually assumed.
Circular Inversion can be a very useful tool in solving problems involving many tangent circles and/or lines.
Basics of Circular Inversion
Inversion of a Circle intersecting O
The first thing that we must learn about inversion is what happens when a circle which intersects the center of the inversion, , is inverted. Let us have circle , with diameter . is chosen arbitrarily on circle . Points and represent the inversions of and , respectively. is the radius of . We seek to show that circle inverts to a line perpendicular to through .
By the definition of inversion, we have and .
We can combine the two equations to get . Rewriting this gives:
Also, since is a diameter of circle , must be right.
Now, we consider and . They share an angle - , and we know that Therefore, we have SAS similarity. Therefore, must be right. From there, it follows that all points on circle will be inverted onto the line perpendicular to at .
Therefore, the inversion of circle becomes a line.
Note that, if circle extends beyond , the argument still holds. All one needs to do is shuffle things around.
Inversion of a Circle not intersecting O
Now, we study the inversion of a circle not intersecting the center of inversion. Let us have circle not intersecting , the center of , the circle which we invert around. The points where intersect circle are points and , respectively. Point is arbitrary and on circle . We invert points , , and , producing , , and , respectively. We draw and . Because is a diameter, must be right. We wish to show that circle inverts to another circle.
The definition of inversion tells us that . From here, we obtain that and By SAS symmetry (exploiting ), the ratios tell us that:
Therefore, we have and . Note that , which must equal . Therefore, . But . Therefore, . As this holds for any , all points on circle will invert to a point on a circle with diameter .