1982 AHSME Problems/Problem 11

Revision as of 13:32, 5 August 2017 by Mamis511 (talk | contribs) (Problem 11 Solution)

Problem 11 Solution

Since $BO$ and $CO$ are angle bisectors of angles $B$ and $C$ respectively, $\angle MBO = \angle OBC$ and similarly $\angle NCO = \angle OCB$. Because $MN$ and $BC$ are parallel, $\angle OBC = \angle MOB$ and $\angle NOC = \angle OCB$ by corresponding angles. This relation makes $\triangle MOB$ and $\triangle NOC$ isosceles. This makes $MB = MO$ and $NO = NC$. Therefore the perimeter of $\triangle AMN$ is $12 + 18 = 30$.