2018 AIME I Problems/Problem 6

Revision as of 18:46, 7 March 2018 by Mathislife16 (talk | contribs)

Solution

Let $a=z^{120}$. This simplifies the problem constraint to $a^6-a \in \mathbb{R}$. This is true iff $Im(a^6)=Im(a)$. Let $\theta$ be the angle $a$ makes with the positive x-axis. Note that there is exactly one $a$ for each angle $0\le\theta<2\pi$. This must be true for $12$ values of $a$ (it may help to picture the reference angle making one orbit from and to the positive x-axis; note every time $\sin\theta=\sin{6\theta}$). For each of these solutions for $a$, there are necessarily $120$ solutions for $z$. Thus, there are $12*120=1440$ solutions for $z$, yielding an answer of $\boxed{440}$.