2019 AMC 12B Problems/Problem 16

Revision as of 21:33, 14 February 2019 by Anna0kear (talk | contribs) (open-up. G'L)

Problem

Lily pads numbered from $0$ to $11$ lie in a row on a pond. Fiona the frog sits on pad $0$, a morsel of food sits on pad $10$, and predators sit on pads $3$ and $6$. At each unit of time the frog jumps either to the next higher numbered pad or to the pad after that, each with probability $\frac{1}{2}$, independently from previous jumps. What is the probability that Fiona skips over pads $3$ and $6$ and lands on pad $10$?

$\textbf{(A) }\frac{15}{256}\qquad\textbf{(B) }\frac{1}{16}\qquad\textbf{(C) }\frac{15}{128}\qquad\textbf{(D) }\frac{1}{8}\qquad\textbf{(E) }\frac{1}{4}$

Solution 1

First, notice that Fiona, if she jumps over the predator on pad $3$, must land on pad $4$. Similarly, she must land on $7$ if she makes it past $6$. Thus, we can split it into $3$ smaller problems counting the probability Fiona skips $3$, Fiona skips $6$ (starting at $4$) and $\textit{doesn't}$ skip $10$ (starting at $7$). Incidentally, the last one is equivalent to the first one minus $1$.

Let's call the larger jump a $2$-jump, and the smaller a $1$-jump.

For the first mini-problem, let's see our options. Fiona can either go $1, 1, 2$ (probability of $\frac{1}{8}$), or she can go $2, 2$ (probability of $\frac{1}{4}$). These are the only two options, so they together make the answer $\frac{3}{8}$. We now also know the answer to the last mini-problem ($\frac{5}{8}$).

For the second mini-problem, Fiona $\textit{must}$ go $1, 2$ (probability of $\frac{1}{4}$). Any other option results in her death to a predator.

Thus, the final answer is $\frac{3}{8} \cdot \frac{1}{4} \cdot \frac{5}{8} = \frac{15}{256} = \boxed{\textbf{(A) }\frac{15}{256}}$.

Solution 2

Consider – independently – every spot that the frog could attain.

Given that it can only jump at most $2$ places per move, and still wishes to avoid pads $3$ and $6$, it must also land on numbers $2$, $4$, $5$, and $7$.

There are two ways to get to that point – one would be $(1,2)$ on the first move, and the other is just $(2)$. The total sum is then $\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} = \frac{3}{4}$, which put into our first column and move on. The frog must subsequently go to space $4$, again with probability $\frac{1}{2}$. Thus, be sure to multiply by $\frac{1}{2}$ again, yielding the result of $\frac{3}{8}.

Similarly, multiply your product by$ (Error compiling LaTeX. Unknown error_msg)\frac{1}{2}$once more, to arrive at spot$5$:$\frac{3}{8} \times {1}{2} = \frac{3}{16}$. For number$7$, take another$\frac{1}{2}, giving us ${3}{16} \times \frac{1}{2} = \frac{3}{32}$.

Next, we must look at a number of options. For a fuller picture, it would be best to break down the choices. The only possibilities here are $(8,9,10), (8,10), and (9,10)$, as the path straight to point $10$ is not available. That leaves us with a partial count of $\frac{1}{8} + \frac{1}{4} + \frac{1}{4} = frac{5}{8}. Multiply, to find the result of turning output's, answer$\frac{3}{32} \times {5}{8} = \boxed{\textbf{(A)} \frac{15}{256}}$. \square

--anna0kear.

See Also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

−−−−−