Wallis's formula

Revision as of 03:10, 9 July 2006 by Quantum leap (talk | contribs)

Wallis's formula states that

(1)$\displaystyle\int_0^{\frac{\pi}{2}} \cos^n(x)\,dx=\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\cdots\left(\frac{n-1}{n}\right)\left(\frac{\pi}{2}\right)$ for even $n\geq2$

(2)$\int_0^{\frac{\pi}{2}} \cos^n(x)\,dx=\displaystyle\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)\cdots\left(\frac{n-1}{n}\right)$ for odd $n\geq3$


Wallis's formula often works well in combination with trigonometric substitution in reducing complicated definite integrals to more manageable ones.