2004 AIME I Problems/Problem 9

Revision as of 08:07, 9 July 2006 by Joml88 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $ABC$ be a triangle with sides 3, 4, and 5, and $DEFG$ be a 6-by-7 rectangle. A segment is drawn to divide triangle $ABC$ into a triangle $U_1$ and a trapezoid $V_1$ and another segment is drawn to divide rectangle $DEFG$ into a triangle $U_2$ and a trapezoid $V_2$ such that $U_1$ is similar to $U_2$ and $V_1$ is similar to $V_2.$ The minimum value of the area of $U_1$ can be written in the form $m/n,$ where $m$ and $n$are relatively prime positive integers. Find $m+n.$

Solution

See also