2020 AMC 12A Problems/Problem 15

Revision as of 14:33, 1 February 2020 by Lopkiloinm (talk | contribs) (Created page with "== Problem == In the complex plane, let <math>A</math> be the set of solutions to <math>z^{3}-8=0</math> and let <math>B</math> be the set of solutions to <math>z^{3}-8z^{2}-...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In the complex plane, let $A$ be the set of solutions to $z^{3}-8=0$ and let $B$ be the set of solutions to $z^{3}-8z^{2}-8z+64=0.$ What is the greatest distance between a point of $A$ and a point of $B?$

$\textbf{(A) } 2\sqrt{3} \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 9 \qquad \textbf{(D) } 2\sqrt{21} \qquad \textbf{(E) } 9+\sqrt{3}$

Solution

Realize that $z^{3}-8=0$ will create an equilateral triangle on the complex plane with the first point at $2+0i$ and the other points with equal magnitude.

Also, realize that $z^{3}-8z^{2}-8z+64$ can be factored through grouping: $z^{3}-8z^{2}-8z+64=(z-8)(z^{2}-8).$ $(z-8)(z^{2}-8).$ will create points at $8+0i$ and $\pm2\sqrt{2}+0i.$

Plotting the points and looking at the graph will make you realize that $1+\sqrt{3}i$ and $8+0i$ are the farthest apart and through Pythagorean Theorem, the answer is revealed to be $\sqrt{\sqrt{3}^{2}+(8+1)^{2}}=\sqrt{84}=\boxed{\textbf{(D) } 2\sqrt{21}.}$