2020 AIME II Problems/Problem 11

Revision as of 10:30, 9 June 2020 by Quacker88 (talk | contribs) (Solution 3)

Solution 3

We know that $P(x)=x^2-3x-7$.

Since $Q(0)=2$, the constant term in $Q(x)$ is $2$. Let $Q(x)=x^2+ax+2$.

Finally, let $R(x)=x^2+bx+c$.

$P(x)+Q(x)=2x^2+(a-3)x-5$. Let its roots be $p$ and $q$.

$P(x)+R(x)=2x^2+(b-3)x+(c-7)$ Let its roots be $p$ and $r$.

$Q(x)+R(x)=2x^2+(a+b)x+(c+2)$. Let its roots be $q$ and $r$.

By vietas, $p+q=\frac{3-a}{2}, p+r=\frac{3-b}{2}, q+r=\frac{-(a+b)}{2}$

We could work out the system of equations, but it's pretty easy to see that $p=\frac32, q=-\frac{a}{2}, r=-\frac{b}{2}$.

$\text{Again, by vietas, }pq=-\frac52\text{, } pr=\frac{c-7}{2}\text{, } qr=\frac{c+2}{2}$ $\text{Multiplying everything together a}\text{nd then taking the sqrt of both sides,}$ \[(pqr)^2=\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)\] \[pqr=\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)}\] $\text{Now, we divide this }\text{equation by }qr=\frac{c+2}{2}$ \[\frac{pqr}{qr}=\frac{\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)\left(\frac{c+2}{2}\right)}}{\frac{c+2}{2}}\] \[p = \frac{\sqrt{\left(-\frac52\right)\left(\frac{c-7}{2}\right)}}{\sqrt{\frac{c+2}{2}}}\] $\text{Recall th}\text{at }p=\frac32 \text{ and square both sides}$ \[\frac94=\frac{\left(-\frac52\right)\left(\frac{c-7}{2}\right)}{\frac{c+2}{2}}\] $\text{Solving gives } c=\frac{52}{19}, \text{ so our answer is }\boxed{071}$ \end{align*}

~quacker88